

Abstracts

Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films

Q.-X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore. "Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films." 2001 *Transactions on Microwave Theory and Techniques* 49.4 (Apr. 2001, Part II [T-MTT] (Special Issue on Microwave Acoustic Wave Devices for Wireless Communications and Sensing)): 769-778.

This paper presents the findings of a design, modeling, and fabrication study of ZnO and PbZr_{0.3}Ti_{0.7}O₃ thin-film bulk acoustic resonators and filters. Measurements of the high-frequency responses of ZnO resonators having different area are used to develop an acoustic model that accurately represents resonator impedance data. The models are also used to interpret S-parameter measurements on thin-film PbZr_{0.3}Ti_{0.7}O₃-based resonators and a value for the effective coupling coefficient deduced. ZnO and PbZr_{0.3}Ti_{0.7}O₃ ladder filters were designed based on measured impedance data from single resonators. Ladder filters based on PbZr_{0.3}Ti_{0.7}O₃ have been fabricated for the first time. It is shown that the high coupling coefficient in PbZr_{0.3}Ti_{0.7}O₃ leads to bandwidths in the range 100/spl sim/120 MHz at a center frequency of 1.6 GHz, larger than the bandwidths of ZnO-based filters.

[Return to main document.](#)